

www.wamsys.co.za

GROUNDWATER – UNDERSTANDING AQUIFERS

By Dr Johann van Wyk & Willem Botes (Pr. Tech Eng.)

Current Options Being Considered (derived from various media reports)

- Groundwater abstraction Cape Flats and Table Mountain Aquifers
- Desalination plant (400 000 m³/day)
 West Coast
- Augmentation of Voëlvlei Dam From Berg River
- Re-use of Waste Water Zandvliet WWTW

Considering the information supplied by City of Cape Town to the public re the alternatives to augment the water supply to Cape Town with specific reference to groundwater abstraction:

there are some doubts around the City's apparent understanding of the basic concept of groundwater abstraction and the functioning of aquifers.

EDRWeb

Aquifers

An **aquifer** is an underground layer of water-bearing permeable rock or unconsolidated materials (gravel, sand, or silt) from which groundwater can be abstracted using a borehole or well.

There are three type of aquifers:

- Unconfined aquifers
- Confined aquifers
- Semi-confined aquifers

EDRWeb

ETR Ne

Unconfined (open) Aquifers

Where the aquifer material between the ground surface and the water table is porous it is known as an unconfined aquifer.

Unconfined Aquifers

Abstraction from an unconfined aquifer (borehole or well)

ETR.Net

Unconfined Aquifers

Water Quality

Recharged from surface water runoff:

Confined Aquifers

Where an aquifer is overlain by a layer of rock or clay (aquitard) that may hold some groundwater but is not porous enough to allow water to flow through it, it is known as a confined aquifer.

- **Recharged from:**
- Less developed land
- Natural environment

www.icipal Assistant

Fractured rock or gravel that is porous enough to hold water and allow it to flow

Water table

Aquitards (Layers of rock or clay)

EDRWeb

Aquifer 🗖

Confined Aquifers

Abstraction from a confined aquifer (borehole).

Confined Aquifers

Water Quality

Recharged from:

- Less developed land
- Natural environment

Shielded from pollutants from developed area and agri-land:

- Microbiological (Bacteria and pathogens) and viruses
- Toxic inorganics (Ammonia and metals)
- Petroleum hydrocarbons
- Pesticides and herbicides

Aquitards (Layers of rock or clay)

EDRWeb

www.icipal Assistant

ETR.Net

Aquifer 🗖

Cape Flats Aquifer

The Cape Flats Aquifer is an unconfined (open) aquifer!

Recharged from surface water runoff:

- Residential
- Industrial
- Agricultural
- Outflows from sewage plants

Adverse quality due to pollutants:

- Microbiological (Bacteria and pathogens) and viruses
- Toxic inorganics (Ammonia and metals)
- Petroleum hydrocarbons
- Pesticides and herbicides

Aquifer

Aquitard (A layer of rock or clay)

ETR.Net

The volume estimated to changed over months – reduced to 35 000 m³/day:

Abstraction cannot be from one point

A labyrinth of new pipelines with pump stations will be required for collection at one/few points before transferring to an existing WTW – given the highly dense built-up area on the Cape Flats

Quality of the Cape Flats aquifer:

Due to the deterioration of ground water quality, significant upgrades at the current WTW will be required (for advanced treatment processes)

> An example of the spatial variation of water quality in the Cape Flats (Water SA vol.36 n.4 Pretoria Jul. 2010.)

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Sinking coastal cities

G. Erkens, T. Bucx, R. Dam, G. de Lange, and J. Lambert

Published: 12 November 2015

Proc. IAHS, 372, 189–198, 2015

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

New Orleans, Louisiana, US

- 14.5 inches of sea level rise by 2040
- Groundwater pumping and dewatering are believed to be
- the primary reasons.

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Tokyo, Japan

Up until the 1960s, the city was sinking by almost 4 inches

every year. The rate went down after regulations were

imposed on groundwater use.

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Ho Chi Minh City, Vietnam

- Many parts of the city are sinking by 0.2-0.4 inches per year.
- The main reasons cited were over-exploitation of
- underground water

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Dhaka, Bangladesh

The city has been sinking due to extensive groundwater

extraction, leading to increased flooding.

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Shanghai, China

- In the last 100 years, the country's biggest city has sunk by
- over 2.5 meters due to pmping of groundwater.

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Manila, Philippines

The capital city is sinking by about 4 inches each year due to over-pumping of groundwater.

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Jakarta, Indonesia

- One of the fastest sinking cities in the world (9.8 inches/year)
- The main reason residents rely heavily on wells
- extracting water from aquifers.

The **SINKING** Coastal Cities of the World

Climate change

Socio-economic development

- Accelerated sea level rise
- Extreme weather events
- Urbanization and population growth
- Increased water demand

Impacts

- Increased flood risk
- Damage to buildings, infrastructure
- Disruption of water management

Causes

- Groundwater extraction
- Oil, gas mining
- Tectonics

Houston, Texas, US

Extensive extraction of groundwater and oil have led to

the city sinking by around 2 inches per year.

www.wamsys.co.za

Thank You

IMESA